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Abstract—We have developed efficient synthetic routes to obtain a novel building block spiro[[8H]indeno[2,1-b]thiophene-8,9 0-
fluorene] (SITF), a monothiophene-containing spirobifluorene analogue, and constructed blue light-emitting materials, including
2 0,7 0-bis([1,1 0-biphenyl]-4-yl)-spiro[indeno[2,1-b]thiophene-8,9 0-fluorene] (BBP–SITF) and 2 0,7 0-bis(9,9 0-spirobifluoren-2-yl)spiro-
[[8H]indeno[2,1-b]-thiophene-8,9 0-fluorene] (BSBF–SITF). BSBF–SITF has shown to be a stable blue light-emitting material with
high PL quantum efficiency (89%) and unique regioselective feature at the C2 of thiophene, which indicate that BSBF–SITF will
be useful for constructing complicated optoelectronic systems.
� 2006 Elsevier Ltd. All rights reserved.
Organic p-conjugated materials continue to attract con-
siderable interest because of their potential applications
in various optoelectronic devices, especially in organic
light-emitting diodes (OLEDs).1 Since Tour and co-
workers early introduced spirobifluorene unit into
organic electronics in 1996,2 spirobifluorene-containing
oligomers and polymers are becoming promising candi-
dates for electroluminescent materials due to their high
luminescence efficiency, carrier mobility, as well as excel-
lent thermal stability. Salbeck et al. exploited spirobiflu-
orene building blocks to construct various oligomers.3

Fully spiro-configured terfluorenes, monodisperse
spirobifluorene trimmers and spirobifluorene-linked
anthracene have also been synthesized and used as blue
light-emitting materials with high thermal stability.4

Carrier-transporting materials of spirobifluorene with
high Tg temperature show excellent nondispersive hole
transporting and ambipolar carrier transporting proper-
ties.5 Our group firstly introduced the spirobifluorene
unit into p-conjugated polymers to enhance the
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morphological stability in film states and to demonstrate
the increase of thermally spectral stability.6 In addition,
spirobifluorene derivatives have also been applied to
solar cells, organic phototransistors, NLO and laser
materials.7 However, the disadvantage of this kind of
oligomers is the difficulty to tune the electronic structure
and incorporate other functional groups, which greatly
limits their applications in the field of organic electronics
and construction of complicated optoelectronic systems.

Incorporating heteroaryl groups, for example, thio-
phene, pyridine, carbazole, into spiro compounds will
be a useful strategy to expand the application of spiro
compounds. However, so far, spiro compounds with
heteroaryl groups have seldom been reported.8 To ex-
plore the complicated light-emitting system and gain
better insight into the effect of spiro-substituted moieties
on the electronic structures, in this contribution, we
present the design and synthesis of a novel thiophene-
containing ter(9,9 0-spirobifluorene)s analogue with reg-
ioselective features, and the investigation of absorption
and emission spectra as well as electrochemical proper-
ties as blue light-emitting materials.

To successfully synthesize spiroindenothiophenefluorene
(SITF), it is necessary to concurrently consider three
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Figure 1. The single-crystal X-ray structures of SITF and BPTF.
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important factors, that is, synthesis of o-halobiaryls,
their reactivity in the preparation of Grignard reagent,
and the Friedel–Crafts reactivity in the dehydration
cyclization. We have attempted three routes to prepare
and obtain the SITF, as summarized in Schemes 1–3.
We examined the effect of o-halobiaryls, for example,
2-bromo-3-phenylthiophene (3a) and 3-(2-bromophen-
yl)thiophene (3b), and conditions of dehydration cycli-
zation, for example, HCl/AcOH and BF3ÆEt2O/CH2Cl2
on the dehydration cyclization.

First of all, 3b was selected as o-halobiaryls and pre-
pared by Suzuki coupling reaction between thienyl bor-
onate ester and o-iodobromobenzene.9 Grignard reagent
from 3b was treated with 4c to obtain tertiary alcohol
5d, followed by dehydration cyclization with a total
yield of nearly 80%. However, Suzuki reaction for 3b
is very expensive. Compound 3a was selected as o-halo-
biaryls, which was easily prepared by the bromination of
3-phenylthiophene. However, the dehydration cycliza-
tion of 5c was not efficient under the condition of
HCl/HOAc and gave SITF in a low yield (35.7%). SITF
and byproduct BPTF were separated and confirmed by
single crystal X-ray diffraction (Fig. 1).10 BPTF was
probably formed in the electrophilic substitution
reaction between 3-phenylthiophene, a decomposition
product of 5c at 110 �C, and 5c. Fortunately, we found
that yield of SITF was effectively improved to 50.2%
under BF3ÆEt2O condition in dilute CH2Cl2 (5c in
CH2Cl2, 4.8 · 10�3 M) at room temperature.11

The desirable blue light-emitting materials 2 0,7 0-
bis([1,1 0-biphenyl]-4-yl)-spiro[indeno[2,1-b]thiophene-8,
9 0-fluorene] (BBP–SITF) and 2 0,7 0-bis(9,9 0-spirobifluo-
ren-2-yl)spiro-[[8H]indeno[2,1-b]thiophene-8,9 0-fluorene]
(BSBF–SITF) have been prepared by Suzuki coupling
reactions.12 The structures of SITF and its derivatives
were confirmed by 1H NMR, 13C NMR, GC–MS,
MALDI-TOF-MS, and elemental analysis.

The absorption spectra of BBP–SITF and BSBF–SITF
(Fig. 2) exhibit maximum peaks at ca. 345 and
353 nm, respectively, which indicates that the conju-
gated chain length of biphenyl moieties is shorter than
that of fluorene moieties. Their emission spectra show
typical feature of terfluorene derivatives. The quantum
yields of BSBF–SITF in dichloromethane were mea-
sured to be 89% by using 9,10-diphenylanthracene as
standards (Table 1). These results indicate that the intro-
duction of heteroaryl substituents via the spiro center
slightly affects the light emitting character by compari-
son with other manners, such as copolymerization. In
addition, the electroluminescent spectrum has a similar
profile compared with the solid film and no shift was
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Figure 2. (Top) UV and PL of BBP–SITF and BSBF–SITF in CH2Cl2
solution; (bottom) EL and PL of BSBF–SITF in the solid state.
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observed, which illustrates that BSBF–SITF is a stable
blue light-emitting material. Cyclic voltammetry (CV)
was performed to investigate the electrochemical behav-
iors as well as the HOMO and LUMO energy levels of
BBP–SITF and BSBF–SITF (Fig. 3). The oxidation on-
set potential and reduction onset potential of BBP–SITF
were measured to be Eox

onset ¼ 0:97 and Ered
onset ¼ �2:28 V.

Thus, the HOMO and LUMO energy levels were esti-
mated to be �5.72 and �2.47 eV, respectively. These
results indicate that incorporation of heteroaryl groups
via the spiro structure slightly affects the electronic
structures of main chains.

In conclusion, we have successfully designed and synthe-
sized ter(9,9 0-spirobifluorene)s analogue BSBF–SITF
Table 1. Physical data of spirans SITF, BBP–SITF, and BSBF–SITF

Compound kmax
a (nm/abs) kmax

a (nm/PL) Qsol (%)b Td (�C)c Tg

SITF 311, 298 333 — 247 1
BBP–SITF 322, 345 387, 404 73% 406 3
BSBF–SITF 309, 353 395, 416 89% 429 >3

‘—’ Represents no characteristics.
a Measured in CH2Cl2 solvent.
b 9,10-Diphenylanthracene in cyclohexane solvent as a standard.
c The temperature was recorded corresponding to a 5% weight loss.
d HOMO/LUMO = �(Eonset � 0.0468 V) � 4.8 eV, where the value 0.0468 V
with regioselective feature as a blue light-emitting mate-
rial. BSBF–SITF has shown excellent thermal stability
and luminescent properties in the spirobifluorene sys-
tem, which indicate that BSBF–SITF will be promising
for constructing complicated optoelectrical systems.
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127.91, 127.68, 127.38, 125.84, 124.39, 124.12, 123.96,
122.81, 122.44, 120.39, 120.28, 120.24, 119.56, 118.87,
66.23, 64.13. Anal. Calcd for C73H42S: C, 92.18; H, 4.45;
S, 3.37. Found: C, 92.16; H, 4.46; S, 3.35. MS (MALDI-
TOF): 950.3.
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